Bryan G. Wallace: “Mathematical Magic”
Hiermit nehme ich Bezug auf den Beitrag: Mathematik ist nur eine Sprache, wo unter anderem auf die Arbeit “Mathematical Magic” von Bryan G. Wallace hingewiesen wird. Ich möchte diese Arbeit erneut in Erinnerung rufen, da ich sie für besonders wichtig halte.
Quelle: The Farce of Physics
Zitat:
In our time, Einstein has replaced Newton as the monarch of physics. Einstein’s disciples tend to crush all opponents of his relativity theories by citing chapter and verse of articles he has published. The main problem with this is the fact that Einstein tends to be a moving target, and his arguments are not consistent from paper to paper, and often within the same paper. Louis Essen has published a booklet titled „The Special Theory of Relativity A Critical Analysis“ in which he examines this question in great detail. [55] Essen is a prominent English physicist who built the first caesium atomic clock in 1955 and determined the most accurate value for the velocity of light by using a cavity resonator. Skipping around the math, I present the following excerpts from the booklet:
Perhaps the strangest feature of all, and the most unfortunate to the development of science, is the use of the thought-experiment. The expression itself is a contradiction in terms, since an experiment is a search for new knowledge that cannot be confirmed, although it might be predicted, by a process of logical thought. A thought-experiment on the other hand cannot provide new knowledge; if it gives a result that is contrary to the theoretical knowledge and assumptions on which it is based then a mistake must have been made. Some of the results of the theory were obtained in this way and differ from the original assumptions…
A common reaction of experimental physicists to the theory is that although they do not understand it themselves it is so widely accepted that it must be correct. I must confess that until recent years this was my own attitude. I was, however, rather more than usually interested in the subject from a practical point of view, having repeated, with microwaves instead of optical waves(Essen 1955), the celebrated Michelson- Morley experiment, which was the starting point of the theory. Then with the introduction of atomic clocks, and the enormous increase in the accuracy of time measurements that they made possible, the relativity effects became of practical significance…
Many of the thought-experiments described by Einstein and others involve the comparison of distant clocks. Such comparisons are now made every day at many laboratories throughout the world. The techniques are well known. It seems reasonable, therefore, to consider the thought-experiments in terms of these techniques. When this is done, the errors in the thought-experiments become more obvious. The fact that errors in the theory arise in the course of the thought- experiments may explain why they were not detected for so long. Theoretical physicists might not have considered them critically from an experimental point of view. But if one has been actually performing such experiments for many years, one is in a more favorable position to detect any departure from the correct procedure. In the existing climate of opinion, one needed to be very confident to speak of definite errors in the theory. Was there not perhaps some subtle interpretation that was being overlooked? A study of the literature did not reveal any, but even so it was familiarity with the experiments that gave one the necessary confidence to maintain a critical attitude.
The literature sometimes reveals a remarkable vagueness of expression, a lack of a clear statement of the assumptions of the theory, and even a failure to appreciate the basic ideas of physical measurement. Ambiguities are not absent from Einstein’s own papers, and various writers, even when advancing different interpretations of the theory, are correct in as much as these interpretations can all be attributed to Einstein…
The contraction of length and the dilation of time can now be understood as representing the changes that have to be made to make the results of measurement consistent. There is no question here of a physical theory but simply of a new system of units in which c is constant, and length and time do not have constant units but have units that vary with v^2/c^2. Thus they are no longer independent, and space and time are intermixed by definition and not as a result of some peculiar property of nature… If the theory of relativity is regarded simply as a new system of units it can be made consistent but it serves no useful purpose… The argument about the clock paradox has continued interminably, although the way the paradox arose and its explanation follow quite clearly from a careful reading of Einstein’s paper… The experiment is often expressed in the dramatized form of two twins, one of whom returns from a round trip younger than his brother; and in this form it has received wide publicity… It is illogical to suggest that a result obtained on the basis of the special theory is correct but is a consequence of a completely different theory developed some years later. It is also illogical to assume that accelerations have no effect as he does in A’s picture of the events and then to assume that gravitation, which in the general theory is assumed to be equivalent to acceleration, does have an effect… It may be surprising, therefore, to find that a more critical examination of the experiments and the experimental conditions suggests that there is no experimental support for the theory… The experiments of the Michelson-Morley type cannot be taken as supporting the theory, because the theory was developed in order to explain the null result that was obtained… The increase of mass with velocity was predicted for the case of charged particles directly from electromagnetic theory before the advent of relativity theory and was confirmed experimentally by Kaufmann…
18. Conclusions
A critical examination of Einstein’s papers reveals that in the course of thought-experiments he makes implicit assumptions that are additional and contrary to his two initial principles. The initial postulates of relativity and the constancy of the velocity of light lead directly to length contraction and time dilation simply as new units of measurements, and in several places Einstein gives support to this view by making his observers adjust their clocks. More usually, and this constitutes the second set of assumptions, he regards the changes as being observed effects, even when the units are not deliberately changed. This implies that there is some physical effect even if it is not understood or described. The results are symmetrical to observers in relative motion; and such can only be an effect in the process of the transmission of the signals. The third assumption is that the clocks and lengths actually change. In this case the relativity postulate can no longer hold.
The first approach, in which the units of measurement are changed, is not a physical theory, and the question of experimental evidence does not arise. There is no evidence for the second approach because no symmetrical experiment has ever been made. There is no direct experimental evidence of the third statement of the theory because no experiments have been made in an inertial system. There are experimental results that support the idea of an observed time dilation, but accelerations are always involved, and there is some indication that they are responsible for the observed effects.
My main insight into Einstein and his work came from a book by Dr. Abraham Pais titled ‚Subtle is the Lord…‘ The Science and the Life of Albert Einstein. [37] Pais is an award-winning physicist who knew Einstein personally during the last nine years of his life. On page 13 we find that in Einstein’s own words he had been an „unscrupulous opportunist.“ On page 44 we learn that Einstein did not attend lectures or study, but instead used Marcel Grossman’s lecture notes to pass his college examinations. With regard to the mathematics of relativity, page 152 states:
Initially, Einstein was not impressed and regarded the transcriptions of his theory into tensor form as ‚überflüssige Gelehrsamkeit,‘ (superfluous learnedness). However, in 1912 he adopted tensor methods and in 1916 acknowledged his indebtedness to Minkowski for having greatly facilitated the transition from special to general relativity.
Since most scientists do not use or are conversant in tensor mathematics, its use has tended to obscure the intimate meaning behind the relativity theoretical arguments. On page 164 Pais asks:
Why, on the whole, was Einstein so reticent to acknowledge the influence of the Michelson-Morley experiment on his thinking?
On page 168 we find the answer to this question in the second volume of Sir Edmund Whittaker’s masterpiece book entitled „History of the Theories of Aether and Electricity“, where:
Whittaker’s opinion on this point is best conveyed by the title of his chapter on this subject: ‚The Relativity Theory of Poincaré and Lorentz.‘
In effect Whittaker showed that Einstein’s special relativity theory was not original work, but just a clever restatement of the theoretical work of Poincaré and Lorentz. The translation of Lorentz’s 1904 relativity paper [57 p.12] states:
…Poincaré has objected to the existing theory of electric and optical phenomena in moving bodies that, in order to explain Michelson’s negative result, the introduction of a new hypothesis has been required, and that the same necessity may occur each time new facts will be brought to light. Surely this course of inventing special hypotheses for each new experimental result is somewhat artificial. It would be more satisfactory if it were possible to show by means of certain fundamental assumptions and without neglecting terms of one order of magnitude or another, that many electromagnetic actions are entirely independent of the motion of the system.
The translation of Einstein’s 1905 special relativity paper [57 p.37] presented the argument that one could explain many electromagnetic actions by fundamental assumptions based on two postulates and that the „introduction of a „luminiferous ether“ will prove to be superfluous“, and his paper made no direct reference to the Michelson-Morley experiment or the work of Poincaré and Lorentz. On page 313 of Pais‘ book we learn that in 1920, after Einstein had become famous, he made an inaugural address on aether and relativity theory for his special chair in Leiden. In the address he states:
The aether of the general theory of relativity is a medium without mechanical and kinematic properties, but which codetermines mechanical and electromagnetic events.
So we finally find that relativity is an ether theory after all, and that this ether has arbitrary abstract contradictory physical characteristics! This illustrates the arbitrary nature of relativity, Most physicists, and for that matter, most physics text books, present the argument that relativity is not an ether theory. On page 467 we find that Einstein wrote to his dear friend M. Besso, near the end of his life in 1954:
I consider it quite possible that physics cannot be based on the field concept,i.e., on continuous structures. In that case, nothing remains of my entire castle in the air, gravitation theory included, [and of] the rest of modern physics.
With regard to the problem of the average physicist not understanding relativity theory, Dr. S. Chandrasekhar, a Nobel laureate physicist, writes in an article [46] titled „Einstein and general relativity: Historical perspectives“:
The meeting of November 6, 1919 of the Royal Society also originated a myth that persists even today (though in a very much diluted version):“Only three persons in the world understand relativity.“ Eddington explained the origin of this myth during the Christmas-recess conversation with which I began this account.
Thomson, as President of the Royal Society at that time, concluded the meeting with the statement:“I have to confess that no one has yet succeeded in stating in clear language what the theory of Einstein really is.“ And Eddington recalled that as the meeting was dispersing, Ludwig Silberstein (the author of one of the early books on relativity) came up to him and said: „Professor Eddington, you must be one of three persons in the world who understands general relativity.“ On Eddington demurring to this statement, Silberstein responded, „Don’t be modest Eddington.“ And Eddington’s reply was, „On the contrary, I am trying to think who the third person is!“
This lack of comprehension of Relativity theory is not uncommon among physicists and astronomers. Over the years, in many intimate conversations and correspondence with them, I’ve found few scientists willing to admit to an indepth understanding of the theory, yet most of them will argue of their belief in it. I have also discovered that even the scientists that are willing to admit to full comprehension of the theory, have serious gaps in their knowledge of it. For example, Prof. William H. McCrea of England wrote the counter argument to Prof. Herbert Dingle’s controversial attack on the inconsistent logic in the theory, which was published in the prestigious journal NATURE. [47] Dingle was an interesting fellow, at one time he was a leading proponent of the relativity theory, and even was a member of several British solar eclipse expeditions. He was a professor at University College in London, and the author of many books and papers on astrophysics, relativity, and the history of science. I was introduced to McCrea by Prof. Thornton Page, at the 1968 Fourth Texas Symposium on Relativistic Astrophysics. McCrea who is considered to be an authority on relativity theory, was surprised to find that Einstein considered relativity to be an ether theory. With regard to the argument that I showed McCrea that represented relativity as an ether theory, Einstein and Infeld state:
…On the other hand, the problem of devising the mechanical model of ether seemed to become less and less interesting and the result, in view of the forced and artificial character of the assumptions, more and more discouraging.
Our only way out seems to be to take for granted the fact that space has the physical property of transmitting electromagnetic waves, and not to bother too much about the meaning of this statement. We may still use the word ether, but only to express some physical property of space. This word ether has changed its meaning many times in the development of science. At the moment it no longer stands for a medium built up of particles. Its story, by no means finished, is continued by the relativity theory. [20 p.153]
There is a very interesting article on this question published in the August 1982 issue of Physics Today by Prof. Yoshimasa A. Ono. The article begins:
It is known that when Albert Einstein was awarded the Nobel Prize for Physics in 1922, he was unable to attend the ceremonies in Stockholm in December of that year because of an earlier commitment to visit Japan at the same time. In Japan, Einstein gave a speech entitled „How I Created the Theory of Relativity“ at Kyoto University on 14 December 1922. This was an impromptu speech to students and faculty members, made in response to a request by K. Nishida, professor of philosophy at Kyoto University. Einstein himself made no written notes. The talk was delivered in German and a running translation was given to the audience on the spot by J. Isiwara, who had studied under Arnold Sommerfeld and Einstein from 1912 to 1914 and was a professor of physics at Tohoku University. Isiwara kept careful notes of the lecture, and published his detailed notes (in Japanese) in the monthly Japanese periodical Kaizo in 1923; Ishiwara’s notes are the only existing notes of Einstein’s talk…
Ono ends his introduction to his translation with the statement:
It is clear that this account of Einstein’s throws some light on the current controversy as to whether or not he was aware of the Michelson-Morley experiment when he proposed the special theory of relativity in 1905; the account also offers insight into many other aspects of Einstein’s work on relativity.
With regard to the ether, Einstein states:
Light propagates through the sea of ether, in which the Earth is moving. In other words, the ether is moving with respect to the Earth…
With regard to the experiment he argues:
Soon I came to the conclusion that our idea about the motion of the Earth with respect to the ether is incorrect, if we admit Michelson’s null result as a fact. This was the first path which led me to the special theory of relativity. Since then I have come to believe that the motion of the Earth cannot be detected by any optical experiment, though the Earth is revolving around the Sun. [48]
The above information gives us insight into the nature of Einstein’s relativity theory. He believes that the sea of ether exists, but he also believes that it cannot be detected by experiments, in other words, he believes it is invisible. The situation in modern physics is very much like the Hans Christian Andersen tale of „The Emperor’s New Clothes“, with Einstein playing the part of the Emperor. The tale goes that the Emperor, who was obsessed with fine clothing to the point that he cared about nothing else, let two swindlers sell him a suit of cloth that would be invisible to anyone who was „unfit for his office or unforgivably stupid.“ It turned out that no one could see the suit – not the emperor, not his courtiers, not the citizens of the town who lined the street to see him show off his new finery. Yet no one dared admit it until a little child cried out, „But he doesn’t have anything on!“
In regard to Einstein’s reluctance to acknowledge the influence of the Michelson-Morley experiment on his thinking, and Whittaker’s argument that his special relativity theory was a clever restatement of the work of Poincaré and Lorentz, I report the following published [56] statements which Einstein made to Prof. R. S. Shankland on this matter:
The several statements which Einstein made to me in Princeton concerning the Michelson-Morley experiment are not entirely consistent, as mentioned above and in my earlier publication. His statements and attitudes towards the Michelson-Morley experiment underwent a progressive change during the course of our several conversations. I wrote down within a few minutes after each meeting exactly what I recalled that he had said. On 4 February 1950 he said,“…that he had become aware of it through the writings of H. A. Lorentz, but only after 1905 had it come to his attention.“ But at a later meeting on 24 October, 1952 he said, „I am not sure when I first heard of the Michelson experiment. I was not conscious that it had influenced me directly during the seven years that relativity had been my life. I guess I just took it for granted that it was true.“ However, in the years 1905-1909 (he told me) he thought a great deal about Michelson’s result in his discussions with Lorentz and others, and then he realized (so he told me) that he „had been conscious of Michelson’s result before 1905 partly through his reading of the papers of Lorentz and more because he had simply assumed this result of Michelson to be true.“…
With regard to the politics that led to Einstein’s fame Dr. S. Chandrasekhar’s article [46] states:
In 1917, after more than two years of war, England enacted conscription for all able-bodied men. Eddington, who was 34, was eligible for draft. But as a devout Quaker, he was a conscientious objector; and it was generally known and expected that he would claim deferment from military service on that ground. Now the climate of opinion in England during the war was very adverse with respect to conscientious objectors: it was, in fact, a social disgrace to be even associated with one. And the stalwarts of Cambridge of those days – Larmor (of the Larmor precession), Newall, and others – felt that Cambridge University would be disgraced by having one of its distinguished members a declared conscientious objector. They therefore tried through the Home Office to have Eddington deferred on the grounds that he was a most distinguished scientist and that it was not in the long-range interests of Britain to have him serve in the army… In any event, at Dyson’s intervention – as the Astronomer Royal, he had close connections with the Admiralty – Eddington was deferred with the express stipulation that if the war should have ended by 1919, he should lead one of two expeditions that were being planned for the express purpose of verifying Einstein’s prediction with regard to the gravitational deflection of light… The Times of London for November 7, 1919, carried two headlines: „The Glorious Dead, Armistice Observance. All Trains in the Country to Stop,“ and „Revolution in Science. Newtonian Ideas Overthrown.“
Dr. F. Schmeidler of the Munich University Observatory has published a paper [49] titled „The Einstein Shift – An Unsettled Problem,“ and a plot of shifts for 92 stars for the 1922 eclipse shows shifts going in all directions, many of them going the wrong way by as large a deflection as those shifted in the predicted direction! Further examination of the 1919 and 1922 data originally interpreted as confirming relativity, tended to favor a larger shift, the results depended very strongly on the manner for reducing the measurements and the effect of omitting individual stars.
So now we find that the legend of Albert Einstein as the world’s greatest scientist was based on the Mathematical Magic of Trimming and Cooking of the eclipse data to present the illusion that Einstein’s general relativity theory was correct in order to prevent Cambridge University from being disgraced because one of its distinguished members was close to being declared a „conscientious objector“!
(Zitatende, Hervorhebung in ROT von Friebe)
Lesen Sie bitte hier weiter!
Beste Grüße Ekkehard Friebe
- 3. Oktober 2010
- Englischsprachige Kritik der Relativitätstheorie
- Kommentare (0)